Fiche annale
Partie d'un sujet zéro - Jeux et physique-chimie - Corrigé 2020

Enseignement de spécialité physique-chimie

Classe de première de la voie générale

Partie d’un sujet zéro :
Jeux et physique-chimie
Corrigé

Un enfant trouve dans un coffre d’un grenier deux jeux datant des années 1970, un tac-tac et un coffret-jeux d’initiation à la chimie.
Ne connaissant pas le principe du tac-tac, il cherche sur Internet et trouve les informations suivantes : le tac-tac est un jouet qui a connu une mode éphémère au début des années 1970. L’objet est constitué de deux boules de plastique dur reliées entre elles par une cordelette d’environ $40\ \text{cm}$ de long, au milieu de laquelle un anneau de plastique est fixé par un nœud.
En imprimant de légers mouvements à cet anneau, on amène les boules à rebondir l’une contre l’autre en produisant le bruit qui donne son nom au jeu.

D’aprèsfrancetvinfo.fr

On s’intéresse dans ce sujet au comportement des boules du tac-tac, puis à un « liquide magique » qu’il est possible de réaliser avec le coffret-jeux d’initiation à la chimie.

Partie 1 : étude du tac-tac

Le tac-tac est présenté sur la photographie ci-dessous.

  • Dans ce qui suit, on appelle :
  • boule $1$ la boule située à droite sur la photographie ;
  • boule $2$ la boule située à gauche sur la photographie.

Alt Physique-chimie première sujet bac

Étude énergétique de la boule $1$

On modélise ici le jeu par un pendule simple constitué de la boule $1$ de masse $m= 80\ \text{g}$, suspendue à un fil inextensible de masse négligeable et de longueur $L=20\ \text{cm}$. Le fil est accroché au point $I$ et les mouvements du pendule s’effectuent dans un plan vertical.

  • Le joueur écarte la boule $1$ d’un angle $\alpha_m$.
  • Le centre de la boule $1$ est ainsi situé au point $G$.
  • Le joueur lâche la boule $1$ sans vitesse initiale.

Le mouvement du pendule est étudié dans le repère $(G_0\ ;\,x,\, z)$ orienté comme l’indique la figure ci-dessous ; l’axe $(G_0z)$ est vertical. On néglige les frottements.

Alt Physique-chimie première sujet bac

Données :

  • l’énergie potentielle de pesanteur est choisie nulle au point $G_0$ le plus bas de la trajectoire ;
  • la valeur de l’intensité de la pesanteur est $g \approx 9,8\ \text{N}\cdot \text{kg}^{-1}$.
  • On s’intéresse à la boule $1$ lorsqu’elle est à une hauteur $z$ et possède une vitesse $v$.
  • Rappeler les expressions :
  • de son énergie cinétique $E_\text{c}$ ;
  • de son énergie potentielle de pesanteur $E_\text{pp}$ ;
  • de son énergie mécanique $E_\text{m}$ en fonction de $m$, $g$, $z$ et $v$.
  • Les formules nous donnent :

$$\begin{aligned} E_\text{c} &= \boxed{\dfrac 12\times m\times v^2} \\ \\ E_\text{pp} &= m\times g\times (z-z_0) \footnotesize{\textcolor{#A9A9A9}{\text{ [avec $z_0$ l’altitude de $G_0$]}}} \\ &= \boxed{m\times g\times z} \footnotesize{\textcolor{#A9A9A9}{\text{ [car $z_0=0$]}}} \\ \\ E_\text{m}&= E_\text{c}+ E_\text{pp} \\ &=\boxed{\dfrac 12\times m\times v^2 + m\times g\times z} \end{aligned}$$

Avec :

  • $m$ la masse d’une boule en $\text{g}$ ;
  • $v$ la vitesse en $\text{m}\cdot \text{s}^{-1}$ ;
  • $z$ l’altitude par rapport à $z_0$, les deux exprimées en $\text{m}$ ;
  • $g \approx 9,8\ \text{N}\cdot \text{kg}^{-1}$.
bannière attention

Attention

$m$ est exprimée en gramme, $E_\text{c}$, $E_\text{pp}$ et $E_\text{m}$ sont exprimées en millijoule ($\text{mJ}$).

Le Système international préconise néanmoins d’utiliser, pour une énergie, le joule ($\text{J}$). Pour cela, il faut convertir $m$, donnée en gramme, en kilogramme, les unités des autres grandeurs ne changeant pas.

  • Avec $m$ exprimée en gramme, il suffit d’ajouter un coefficient $10^{-3}$ à chaque formule.
bannière astuce

Astuce

Pour retrouver l’expression des énergies cinétique, potentielle et mécanique, voir le cours « L'énergie mécanique », parties 1.b, 2.b et 3.a.

  • On modélise expérimentalement la situation en utilisant un montage comprenant un capteur, un pendule simple de même caractéristique que la partie du tac-tac associée à la boule $1$.

On peut alors tracer les variations des trois types d’énergie (en $\text{mJ}$) précédentes en fonction de l’abscisse $x$ (en $\text{mm}$) du centre de la boule $1$ pour seulement une partie de la trajectoire de la boule $1$.

  • On obtient les courbes suivantes :

Alt Physique-chimie première sujet bac

  • Associer, en justifiant la réponse, chaque courbe à l’énergie $E_\text{c}$, $E_\text{pp}$ ou $E_m$ dont elle représente les variations.

L’énergie mécanique se conserve au cours du mouvement, car les frottements sont négligeables.

  • $\boxed{E_\text{m}}$ est représentée par la $\boxed {\text{courbe }1}$ ($E_\text{m} = \text{constante}$).

Si $x = 0$, alors $z = 0$, donc $E_\text{pp} = 0$.

  • $\boxed {E_\text{pp}}$ est représentée par la $\boxed {\text{courbe }3.}$
  • On en déduit que $\boxed{E_\text{c}}$ est représentée par la $\boxed{\text{courbe }2.}$

Étude du choc entre les deux boules

On lâche sans vitesse initiale la boule $1$ du point $G$. Au point $G_0$, un choc se produit entre la boule $1$ et la boule $2$ qui initialement est au repos.

  • La boule $2$ se met en mouvement.

Alt Physique-chimie première sujet bac

On suppose qu’au point $G_0$ et juste avant le choc la boule $1$ possède la vitesse maximale $v_{G_0} = 1,0\ \text{m}\cdot \text{s}^{-1}$ et une énergie mécanique de $42\ \text{mJ}$.
Au cours du choc entre les deux boules, il se produit une dissipation d’énergie mécanique $E_\text{dis} = 15\ \text{mJ}$.

Juste après le choc, la boule $1$ est au repos et la boule $2$ se met en mouvement vers la gauche pour atteindre, avant de redescendre, un point extrême $G_\text{max}$ dont on veut déterminer l’altitude $z_{G_\text{max}}$.

  • Calculer l’énergie mécanique $E_{\text{m}2,G_0}$ de la boule $2$ en $G_0$ juste après le choc.

Au moment du choc, nous savons que la boule $1$ transfère son énergie à la boule $2$, avec une perte d’énergie $E_\text{dis} = 15\ \text{mJ}$.

  • Nous en déduisons donc :

$$\begin{aligned} E_{\text{m}2,G_0} &= E_{\text{m}1,G_0} - E_\text{dis} \\ &= 42-15 \\ &=\boxed{27\ \text{mJ}} \end{aligned}$$

  • Expliquer pourquoi l’énergie cinétique de la boule $2$ au point $G_\text{max}$ est nulle.

Au point $G_\text{max}$, la boule $2$ atteint sa hauteur maximale, sa vitesse est donc nulle.

  • Selon la formule rappelée plus haut, si sa vitesse est nulle, alors son énergie cinétique est nulle.
  • Exprimer l’énergie mécanique $E_{\text{m}2,G_\text{max}}$ de la boule $2$ au point $G_\text{max}$ en fonction de $m$, $g$ et $z_{G_\text{max}}$.

$$\begin{aligned} E_{\text{m}2,G_\text{max}} &= E_{\text{c}2,G_\text{max}} + E_{\text{pp}2,G_\text{max}} \\ &= E_{\text{pp}2,G_\text{max}} \footnotesize{\textcolor{#A9A9A9}{\text{ [car $E_{\text{c}2,G_\text{max}}=0$]}}} \\ &=\boxed{m\times g \times z_{G_\text{max}}} \footnotesize{\textcolor{#A9A9A9}{\text{ [car $z_0=0$]}}} \end{aligned}$$

  • En supposant que l’énergie mécanique de la boule $2$ reste constante au cours de son mouvement, calculer la valeur de l’altitude $z_{G_\text{max}}$. Conclure.

Nous savons que l’énergie mécanique de la boule $2$ reste constante.

  • Nous en déduisons :

$$\begin{aligned} E_{\text{m}2,G_\text{max}} = E_{\text{m}2,G_0} &\begin{aligned} \Leftrightarrow m\times g \times z_{G_\text{max}} = E_{\text{m}2,G_0} \end{aligned} \\ & \begin{aligned} \Leftrightarrow z_{G_\text{max}} &= \dfrac{E_{\text{m}2,G_0}}{ m\times g} \\ &\approx\dfrac{27}{80\times 9,8} \\ &\approx0,034\ \text{m} \\ &\approx\boxed {3,4\ \text{cm}} \end{aligned} \end{aligned}$$

bannière attention

Attention

Nous avons conservé $E_{\text{m}2,G_0}$ exprimée en $\text{mJ}$, nous avons donc laissé $m$ exprimée en $\text{g}$.

De la même façon, en supposant pour la boule $1$ que l’énergie mécanique s’est conservée entre $G$ et $G_0$ :

$$\begin{aligned} E_{\text{m}1,G} = E_{\text{m}1,G_0} & \begin{aligned} \Leftrightarrow m\times g \times z_{G} = E_{\text{m}1,G_0} \end{aligned} \\ &\begin{aligned} \Leftrightarrow z_{G} &= \dfrac{E_{\text{m}1,G_0}}{ m\times g} \\ &\approx\dfrac{42}{80\times 9,8} \\ &\approx0,054\ \text{m} \\ &\approx 5,4\ \text{cm} \\ &\boxed{> z_{G_\text{max}}} \end{aligned} \end{aligned}$$

La boule $2$ montera moins haut que l’altitude de départ de la boule $1$ (ce qui est dû à la perte d’énergie lors du choc).

  • En prolongeant le raisonnement – la boule $2$ entre en contact avec la boule $1$, et ainsi de suite –, il y aura, comme dans l’étude que nous venons de mener, une dissipation d’énergie ; nous pouvons donc conclure que le mouvement des deux boules finira par s’arrêter.
bannière astuce

Astuce

Pour retrouver un exemple de problème sur l’énergie mécanique, voir le cours « L’énergie mécanique : énergies cinétique et potentielle », parties 3.b.

Partie 2 : étude du « liquide magique »

L’enfant utilise le coffret-jeux d’initiation à la chimie pour réaliser une expérience intitulée « Le liquide magique ».
L’expérience est à faire en présence d’un adulte.

Le livret fourni dans la boîte indique la démarche à suivre :

  • mets les gants et les lunettes qui sont fournis ;
  • dans l’erlenmeyer, verse $150\ \text{mL}$ de la solution nommée $\text{S}$ ;
  • dissous-y $5\ \text{g}$ de glucose ;
  • ajoute $1\ \text{g}$ de bleu de méthylène ; la solution devient bleue puis progressivement devient incolore ;
  • bouche et agite vigoureusement : la solution devient immédiatement bleue, puis, après agitation, se décolore à nouveau progressivement ;
  • agite une nouvelle fois : la solution devient encore bleue, puis se décolore progressivement.

On obtient ainsi deux couleurs de solutions :

Alt Physique-chimie première sujet bac

L’objectif de cette partie est d’expliquer l’évolution de la couleur de la solution.

Données :

  • formule brute du glucose : $\text{C}_6 \text{H}_{12} \text{O}_{6,(\text{aq})}$ ;
  • masse molaire du glucose : $M\approx 180\ \text{g}\cdot \text{mol}^{-1}$ ;
  • forme oxydée du bleu de méthylène, notée $\text{BM}^+_\text{(aq)}$, seule espèce colorée en solution ;
  • forme réduite du bleu de méthylène notée $\text{BMH}_{(\text{aq})}$ ;
  • couples oxydants-réducteurs mis en jeu :
  • $\text{BM}^+_\text{(aq)}/ \text{BMH}_{(\text{aq})}$,
  • $\text{O}_{2,(\text{aq})} / \text{H}_2 \text{O}_{(\text{l})}$,
  • $\text{C}_6 \text{H}_{12} \text{O}_{7,(\text{aq})} / \text{C}_6 \text{H}_{12}\text{O}_{6,(\text{aq})}$ ;
  • volume molaire des gaz dans les conditions de l’expérience $V_\text{m} \approx 24,0\ \text{L}\cdot \text{mol}^{-1}$ ;
  • la composition de l’air est considérée comme connue du candidat.

Étude qualitative

  • Lorsque l’on agite l’erlenmeyer, une partie du dioxygène de l’air se dissout dans la solution, puis réagit en oxydant la forme réduite du bleu de méthylène.

La transformation chimique observée lors de l’agitation peut être modélisée par la réaction (1) dont l’équation est écrite ci-après :

$$2 \text{BMH}_{(\text{aq})} + \text O_{2,(\text{aq})} + 2\text{H}^+_{(\text{aq})} \to 2 \text{H}_2 \text{O}_{(\text{l})} + 2 \text{BM}^+_{(\text{aq})}$$

  • Définir une oxydation.
  • Une oxydation est une réaction chimique dans laquelle une espèce chimique perd des électrons.
bannière astuce

Astuce

Pour retrouver les définitions d’oxydation ou de réduction, voir le cours « Modélisation d’une réaction chimique », partie 1.b.

  • Il se produit ensuite une deuxième réaction d’oxydoréduction entre le glucose et le bleu de méthylène sous forme $\text{BMH}_{(\text{aq})}$ (réaction (2)).
  • La demi-équation électronique du couple $\text{C}_6 \text{H}_{12} \text{O}_{7,(\text{aq})} / \text{C}_6 \text{H}_{12}\text{O}_{6,(\text{aq})}$ s’écrit :

$$\text{C}_6 \text{H}_{12} \text{O}_{7,(\text{aq})} + 2 \text H^+_{(\text{aq})} + 2 \text{e}^- = \text{C}_6 \text{H}_{12}\text{O}_{6,(\text{aq})} + \text{H}_2 \text{O}_{(\text{l})}$$

  • Justifier que le glucose est le réducteur de ce couple.
  • Nous voyons, sur la demi-équation donnée, que c’est le glucose qui cède les électrons, il s’agit donc du réducteur du couple.
bannière astuce

Astuce

Pour retrouver le lien entre demi-équations électroniques et équation-bilan, voir le cours « Modélisation d’une réaction chimique », partie 1.c.

  • Écrire la demi-équation électronique du couple $\text{BM}^+_{(\text{aq})} / \text{BMH}_{(\text{aq})}$.

$\text{BM}^+_{(\text{aq})}$ est l’oxydant, $\text{BMH}_{(\text{aq})}$ est le réducteur.

  • Nous en déduisons la demi-équation électronique du couple :

$$\boxed{\text{BM}^+_{(\text{aq})} + \overbrace{\text H^+_{(\text{aq})}}^1 + \overbrace{2 \text{e}^-}^2 = \text{BMH}_{(\text{aq})}}$$

bannière astuce

Astuce

1. Nous équilibrons les nombres d’atomes en ajoutant $1$ ion hydronium.
2. Nous équilibrons ensuite les charges électriques en ajoutant $2$ électrons.

  • Ces derniers sont bien du côté de l’oxydant.

Pour retrouver la définition d’une demi-équation électronique et la façon de l’équilibrer, voir le cours « Modélisation d’une réaction chimique », parties 1.b et 1.c.

  • En déduire l’équation de la réaction (2) modélisant la réduction de la forme oxydée du bleu de méthylène par le glucose.

Nous savons que le glucose réagit avec le bleu de méthylène sous forme $\text{BMH}_{(\text{aq})}$.
Nous savons en outre que l’équation-bilan est la somme des demi-équations.

  • Nous en déduisons donc :

$$\overbrace{\text{C}_6 \text{H}_{12}\text{O}_{6,(\text{aq})}}^{\text{red}_2} + \overbrace{\text{BM}^+_{(\text{aq})}}^{\text{ox}_1} + \text{H}_2\text{O}_{(\text{l})} + \text H^+_{(\text{aq})} + 2\text e^- \to \overbrace{\text{C}_6 \text{H}_{12} \text{O}_{7,(\text{aq})}}^{\text{ox}_2} + \overbrace{\text{BMH}_{(\text{aq})}}^{\text{red}_1} +2 \text H^+_{(\text{aq})}+ 2\text e^-$$

  • Alors, l’équation-bilan de la réaction (2) est :

$$\boxed{\text{C}_6 \text{H}_{12}\text{O}_{6,(\text{aq})} + \text{BM}^+_{(\text{aq})} + \text{H}_2\text{O}_{(\text{l})} \to \text{C}_6 \text{H}_{12} \text{O}_{7,(\text{aq})} + \text{BMH}_{(\text{aq})} + \text H^+_{(\text{aq})}}$$

bannière astuce

Astuce

Pour retrouver le lien entre demi-équations électroniques et équation-bilan, voir le cours « Modélisation d’une réaction chimique », partie 1.d.

  • À l’aide des modélisations effectuées, expliquer les variations de couleur observées lors de l’expérience avec le « liquide magique ».

La solution devient bleue après agitation car la réaction (1) se produit.

  • Il y a formation de $\text{BM}^+$, seule espèce chimique colorée, et qui est bleue.

Cette espèce réagit ensuite avec le glucose (réaction (2)) et se transforme en $\text{BMH}$ incolore.

  • La solution devient incolore dans un second temps.

Étude quantitative

On considère que, compte tenu des volumes utilisés, une fois bouché hermétiquement, l’erlenmeyer contient un volume d’air $V(\text{air}) = 0,240\ \text{L}$. Le bleu de méthylène introduit réagit dans la réaction (1), puis est régénéré dans la réaction (2).

  • Calculer les quantités de matière $n_\text{i}(\text{O}_2)$ de dioxygène et $n_\text{i}(\text{C}_6 \text{H}_{12}\text{O}_6)$ de glucose contenues initialement dans l’erlenmeyer.

Nous savons que l’air est composé d’environ $21\ \%$ de dioxygène.

  • Nous en déduisons :

$$\begin{aligned} V(\text{O}_2)&\approx V(\text{air}) \times 0,21 \\ &\approx0,240 \times 0,21 \\ &\approx 0,0504\ \text{L} \end{aligned}$$

Le dioxygène est sous forme gazeuse, nous connaissons donc son volume molaire $V_\text{m}\approx 24,0\ \text{L}\cdot \text{mol}^{-1}$.

  • Nous pouvons calculer maintenant la quantité de matière de dioxygène :

$$\begin{aligned} n_\text{i}(\text{O}_2) &= \dfrac{ V(\text{O}_2)}{V_\text{m}} \\ &\approx \dfrac{0,0504}{24,0} \\ &\approx \boxed{0,0021\ \text{mol}} \end{aligned}$$

Nous mettons dans la solution $m(\text{C}_6 \text{H}_{12}\text{O}_6)=5\ \text{g}$ de glucose, et nous connaissons sa masse molaire $M\approx 180\ \text{g}\cdot \text{mol}^{-1}$.

  • Nous en déduisons :

$$\begin{aligned} n_\text{i}(\text{C}_6 \text{H}_{12}\text{O}_6) &= \dfrac{ m(\text{C}_6 \text{H}_{12}\text{O}_6)}{M} \\ &\approx \dfrac{5}{180} \\ &\approx \boxed{0,028\ \text{mol}} \end{aligned}$$

bannière astuce

Astuce

Pour retrouver la définition du volume molaire et les formules pour calculer les quantités de matière, voir le cours « La mole, ses formules et la relation avec la masse volumique », parties 1.d, 3.b. et 3.c.

  • Sans rouvrir l’erlenmeyer, l’enfant réalise dans la journée plusieurs séries d’agitations successives. Au bout de quelques heures, l’expérience « Le liquide magique » ne fonctionne plus, car la couleur bleue n’apparaît plus.
  • Justifier que c’est parce que tout le dioxygène disponible a disparu. On attend un raisonnement s’appuyant sur un bilan de matière.

Reprenons les équations des deux réactions.

  • Pour la première, nous avons :

$$2 \text{BMH}_{(\text{aq})} + \text O_{2,(\text{aq})} + 2\text{H}^+_{(\text{aq})} \to 2 \text{H}_2 \text{O}_{(\text{l})} + 2 \text{BM}^+_{(\text{aq})}$$

  • Pour la seconde, nous avons :

$$\text{C}_6 \text{H}_{12}\text{O}_{6,(\text{aq})} + \text{BM}^+_{(\text{aq})} + \text{H}_2\text{O}_{(\text{l})} \to \text{C}_6 \text{H}_{12} \text{O}_{7,(\text{aq})} + \text{BMH}_{(\text{aq})} + \text H^+_{(\text{aq})}$$

  • En étudiant les coefficients stœchiométriques dans la réaction (1), nous nous rendons compte que, pour $1\ \text{mol}$ de $\text{O}_2$ qui disparaît, nous obtenons $2\ \text{mol}$ de $\text{BM}^+_{(\text{aq})}$.
  • En faisant de même avec la réaction (2), nous voyons que $2\ \text{mol}$ de $\text{C}_6 \text{H}_{12}\text{O}_{6,(\text{aq})}$ disparaissent avec $2\ \text{mol}$ de $\text{BM}^+_{(\text{aq})}$.
  • $1\ \text{mol}$ de $\text{O}_2$ disparaît quand $2\ \text{mol}$ de $\text{C}_6 \text{H}_{12}\text{O}_{6,(\text{aq})}$ disparaissent.

Or, l’enfant ne rouvre pas l’erlenmeyer.

  • Aucun dioxygène supplémentaire n’est apporté.

Selon les quantités initiales de matière calculées à la question précédente, nous avons :

$$\boxed{ n_i(\text{O}_2)\approx 0,0021\ \text{mol} \red {<} \dfrac{ n_i(\text{C}_6 \text{H}_{12}\text{O}_6)}{2}\approx 0,014\ \text{mol}}$$

Le dioxygène est donc le réactif limitant. Lorsque la quantité de matière de dioxygène sera consommée, la réaction (1) ne pourra plus se faire, il n’y aura plus de production de $\text{BM}^+_{(\text{aq})}$ et donc plus de coloration bleue.

  • Le « liquide magique » ne fonctionne plus par défaut de dioxygène.
bannière astuce

Astuce

Pour réviser l’avancement d’une réaction, ses coefficients stœchiométriques et la définition de réactif limitant, voir le cours « Modélisation d’une réaction chimique », partie 2.