Les équations et inéquations
Égalités et opérations
Égalités et opérations
- Lorsque l’on résout une équation, il faut faire attention à manipuler les deux parties de l’égalité de façon à ce qu’elles aient toujours la même valeur.
- On ne divise jamais par l’inconnue, au cas où celle-ci serait égale à $0$.
Équations
Équations
- Une équation est une égalité dans laquelle figure un nombre inconnu désigné par une lettre et appelé « inconnue ».
- La partie située avant le signe égal est appelée premier membre de l’équation, quand la partie située après est appelée deuxième membre de l’équation.
- Il existe deux équations de référence :
- L’équation de la forme $a + x = b$ d’inconnue $x$ n’admet qu’une seule solution : $x = b - a$
- L’équation de la forme $ax = b$ avec $a \neq 0$, d’inconnue $x$ n’admet qu’une seule solution : $x = \frac{b}{a}$
Inéquations
Inéquations
- Une inéquation est une inégalité dans laquelle une lettre désigne une inconnue.
- Elle se note avec les symboles $<$ (inférieur à) et $>$ (supérieur à).
- On dit qu'un nombre est une solution d'une inéquation si on obtient une inégalité qui est vraie quand on remplace l'inconnue par ce nombre dans l'inéquation.
- Résoudre une inéquation consiste à trouver l’ensemble des solutions qui rendent vraie l’inégalité.
- Addition ou soustraction et inégalités
- $a$, $b$ et $c$ désignent trois nombres relatifs.
- Si $a \leq b$, alors $a + c \leq b + c$
- Si $a \leq b$, alors $a - c\leq b - c$
- Multiplication et inégalités
- $a$, $b$ et $c$ désignent trois nombres relatifs.
- Si $a \leq b$ et $c > 0$, alors $a \times c \leq b \times c$
- Si $a \leq b$ et $c < 0$, alors $a \times c \geq b \times c$
La résolution d’une équation comporte 5 étapes :
- Choix de l’inconnue
- Traduction de l’énoncé par une équation
- Résolution de l’équation : cela consiste à isoler l’inconnue dans l’un des membres
- Vérification : il faut vérifier que la solution répond bien au problème
- Conclusion
La résolution d’une inéquation comporte 5 étapes :
- Choix de l’inconnue
- Traduction de l’énoncé par une inéquation
- Résolution de l’inéquation : cela consiste à isoler l’inconnue dans l’un des membres
- Compatibilité : la résolution de l’inéquation donne un ensemble de solutions. Or, il faut parfois en écarter certaines car elles sont « incompatibles » ou ne correspondent pas au problème concret.
- Conclusion