Intervalle de fluctuation asymptotique

information-icon

Si tu es un lycéen en terminale, tu dois déjà avoir planifié tes révisions pour ton baccalauréat 2025. Si ce n’est pas le cas, tu peux te baser sur notre programme de révision en le planifiant en fonction des dates du bac 2025 ou des coefficients des matières … 💪

Soit $X_n$ une variable aléatoire suivant une loi binomiale $B(n,p)$, $\alpha$ un réel tel que $0<\alpha < 1$ et $Y$ une variable aléatoire suivant la loi normale centrée réduite $N(0,1)$.

On appelle $u_{\alpha}$ l’unique réel tel que : $P(-u_{\alpha} \leq Y \leq u_{\alpha}) = 1 - \alpha$

On appelle $I_n$ l’intervalle : $I_n = \left[p-u{\alpha}\dfrac{\sqrt{p(1-p)}}{\sqrt{n}};p+_{\alpha}\dfrac{\sqrt{p(1-p)}}{\sqrt{n}} \right]$

Alors :

$\lim\limits_{n \rightarrow +\infty} p \left( \dfrac{X_n}{n} \in I_n \right) = 1 - \alpha$

L’intervalle $I_n = \left[p-u_{\alpha}\dfrac{\sqrt{p(1-p)}}{\sqrt{n}};p+u_{\alpha}\dfrac{\sqrt{p(1-p)}}{\sqrt{n}} \right]$ contient la fréquence $F_n = \dfrac{X_n}{n}$ avec une probabilité qui se rapproche de $1 - \alpha$ lorsque $n$ augmente.

On dit que c’est un intervalle de fluctuation asymptotique de $F_n$ au seuil de $1 - \alpha$.

Cette approximation est valable lorsque $n \geq 30$, $np \geq 5$ et $n(1-p) \geq 5$.